树状数组

树状数组

参考:https://oi-wiki.org/ds/fenwick

1. 模板

cpp <fenwick_tree>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#include <bits/stdc++.h>
#if (1)
#ifdef _MSC_VER
#include <intrin.h>
#endif
int countl_zero(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanReverse(&index, n);
return 31 - index;
#else
return __builtin_clz(n);
#endif
}
#else // if (1)
int countl_zero(unsigned int n) {
int res = 0;
while (!(x & 0x80000000)) ++res, x <<= 1;
return res;
}
#endif // if (1)
template <class T, T (*e)(), T (*sum)(T, T), T (*diff)(T, T) = nullptr>
class fenwick_tree {
protected:
int n_;
std::vector<T> data_;

public:
fenwick_tree() : fenwick_tree(0) {}
explicit fenwick_tree(int n) : n_(n), data_(n, e()) {}
explicit fenwick_tree(const std::vector<T>& a) : n_(int(a.size())), data_(a.size(), e()) {
for (int p = 1; p <= n_; ++p) {
data_[p - 1] = sum(data_[p - 1], a[p - 1]);
if (int q = p + (p & -p); q <= n_) data_[q - 1] = sum(data_[q - 1], data_[p - 1]);
}
}
fenwick_tree(fenwick_tree const&) = default;
fenwick_tree(fenwick_tree&&) = default;
fenwick_tree& operator=(fenwick_tree const&) = default;
fenwick_tree& operator=(fenwick_tree&&) = default;

void add(int p, T x) {
assert(0 <= p && p < n_);
++p;
while (p <= n_) {
data_[p - 1] = sum(data_[p - 1], x);
p += p & -p;
}
}
T prefix_sum(int p) const {
assert(-1 <= p && p < n_);
++p;
T s = e();
while (p > 0) {
s = sum(s, data_[p - 1]);
p -= p & -p;
}
return s;
}
T sum_range(int l, int r) const {
assert(0 <= l && l <= r && r <= n_);
static_assert(diff != nullptr);
return diff(prefix_sum(r - 1), prefix_sum(l - 1));
}
int kth(T k) const {
T s = 0;
int x = 0;
for (int i = 31 - countl_zero(n_); i >= 0; --i) {
x += 1 << i;
if (x >= n_ || sum(s, data_[x - 1]) >= k)
x -= 1 << i;
else
s = sum(s, data_[x - 1]);
}
return x;
}
int size() const { return n_; }
};
template <class T>
struct _fenwick_sum {
static T e() { return 0; }
static T sum(T a, T b) { return a + b; }
static T diff(T a, T b) { return a - b; }
using type = fenwick_tree<T, e, sum, diff>;
};
template <class T>
using fenwick_sum = typename _fenwick_sum<T>::type;
python FenwickTree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class FenwickTree:
def __init__(self, n: int) -> None:
self._n = n
self._a = [0] * n

@classmethod
def from_list(cls, arr: list[int]) -> "FenwickTree":
fw = cls(len(arr))
for i in range(1, fw._n + 1):
fw._a[i - 1] += arr[i - 1]
if (j := i + (i & -i)) <= fw._n:
fw._a[j - 1] += fw._a[i - 1]
return fw

def add(self, i: int, x: int) -> None:
assert 0 <= i < self._n
i += 1
while i <= self._n:
self._a[i - 1] += x
i += i & -i

def prefix_sum(self, i: int) -> int:
assert -1 <= i < self._n
i += 1
res = 0
while i > 0:
res += self._a[i - 1]
i -= i & -i
return res

def sum_range(self, l: int, r: int) -> int:
assert 0 <= l <= r <= self._n
return self.prefix_sum(r - 1) - self.prefix_sum(l - 1)

@property
def n(self) -> int:
return self._n

2. 例题

2.1 LibreOJ #130 单点加,查询区间和

  • 1 x k 将第 x 个数加上 k
  • 2 l r 输出区间 [l, r] 内每个数的和
cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include <bits/stdc++.h>
#include <fenwick_tree>
using namespace std;
using T = long long;
using fenwick = fenwick_sum<T>;
int main() {
ios::sync_with_stdio(false), cin.tie(0);
int N, M;
cin >> N >> M;
vector<T> a(N);
for (auto& x : a) cin >> x;
fenwick fw(a);
while (M--) {
int op, a, b;
cin >> op >> a >> b;
if (op == 1) {
fw.add(a - 1, b);
} else {
cout << fw.sum_range(a - 1, b) << '\n';
}
}
}

2.2 LibreOJ #131 区间加,查询单点值

  • 1 l r k 将区间 [l, r] 内每个数加上 k
  • 2 p 输出第 p 个数的值

思路是用树状数组维护原数组的差分数组,差分数组的前缀和就是原数组的值。

cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#include <bits/stdc++.h>
#include <fenwick_tree>
using T = long long;
using fenwick = fenwick_sum<T>;
int main() {
ios::sync_with_stdio(false), cin.tie(0);
int N, M;
cin >> N >> M;
vector<T> a(N);
for (auto& x : a) cin >> x;
for (int i = N - 1; i > 0; --i) a[i] -= a[i - 1];
fenwick fw(a);
while (M--) {
int op;
cin >> op;
if (op == 1) {
int l, r, v;
cin >> l >> r >> v;
fw.add(l - 1, v);
if (r < N) fw.add(r, -v);
} else {
int p;
cin >> p;
cout << fw.prefix_sum(p - 1) << '\n';
}
}
}

2.3 LibreOJ #132 区间加,查询区间和

  • 1 l r k 将区间 [l, r] 内每个数加上 k
  • 2 l r 输出区间 [l, r] 内每个数的和

思路见https://oi-wiki.org/ds/fenwick/#区间加区间和

cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#include <bits/stdc++.h>
#include <fenwick_tree>
template <class T>
class fenwick_range_sum {
using fenwick = fenwick_sum<T>;
fenwick t1, t2;
void add_(int p, T x) {
t1.add(p, x);
t2.add(p, x * p);
}

public:
fenwick_range_sum() : fenwick_range_sum(0) {}
explicit fenwick_range_sum(int n) : t1(n), t2(n) {}
explicit fenwick_range_sum(std::vector<T>&& a) {
for (int i = a.size() - 1; i > 0; --i) a[i] -= a[i - 1];
t1 = fenwick(a);
for (int i = 0; i < a.size(); ++i) a[i] *= i;
t2 = fenwick(a);
a.clear();
}
explicit fenwick_range_sum(std::vector<T> const& a) : fenwick_range_sum(std::vector<T>(a)) {}
fenwick_range_sum(fenwick_range_sum const&) = default;
fenwick_range_sum(fenwick_range_sum&&) = default;
fenwick_range_sum& operator=(fenwick_range_sum const&) = default;
fenwick_range_sum& operator=(fenwick_range_sum&&) = default;

void add(int l, int r, T x) {
assert(0 <= l && l <= r && r <= t1.size());
add_(l, x);
if (r < t1.size()) add_(r, -x);
}
T sum(int l, int r) const {
assert(0 <= l && l <= r && r <= t1.size());
return t1.prefix_sum(r - 1) * r - t1.prefix_sum(l - 1) * l - t2.sum_range(l, r);
}
int size() const { return t1.size(); }
};

using namespace std;
using T = long long;
using fenwick = fenwick_range_sum<T>;
int main() {
ios::sync_with_stdio(false), cin.tie(0);
int N, M;
cin >> N >> M;
vector<T> a(N);
for (auto& x : a) cin >> x;
fenwick fw(std::move(a));
while (M--) {
int op, l, r, v;
cin >> op >> l >> r;
if (op == 1) {
cin >> v;
fw.add(l - 1, r, v);
} else {
cout << fw.sum(l - 1, r) << '\n';
}
}
}

2.4 洛谷P1908 全局逆序对数量

权值数组:一个序列 \(a\) 的权值数组 \(b\),满足 \(b[x]\) 的值为 \(x\)\(a\) 中的出现次数。

思路是把输入序列离散化,用树状数组维护权值数组。权值数组的前缀和就是比当前数小的数的个数。

cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#include <bits/stdc++.h>
#include <fenwick_tree>
using namespace std;
using fenwick = fenwick_sum<int>;
int main() {
ios::sync_with_stdio(false), cin.tie(0);
int N;
cin >> N;
vector<int> a(N);
for (auto& x : a) cin >> x;
auto b = a;
sort(begin(b), end(b)), b.erase(unique(begin(b), end(b)), end(b));
for (auto& x : a) x = lower_bound(begin(b), end(b), x) - begin(b);
fenwick fw(N);
ll ans = 0;
for (auto x : views::reverse(a)) {
ans += fw.prefix_sum(x - 1);
fw.add(x, 1);
}
cout << ans;
}

2.5 牛客61132L 单点修改,查询序列第k小的值

  • p x 将第 p 个数修改为 x,并输出修改后序列的中位数

思路是用树状数组维护权值数组,用倍增的方法(kth)求序列中第 \((N+1)/2\) 小的值。

cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#include <bits/stdc++.h>
#include <fenwick_tree>
using namespace std;
using fenwick = fenwick_sum<int>;
using ll = long long;
int main() {
ios::sync_with_stdio(false), cin.tie(0);
int N, M;
cin >> N >> M;
vector<int> a(N);
fenwick fw(int(1e6) + 1);
for (auto& x : a) cin >> x, fw.add(x, 1);
while (M--) {
int p, x;
cin >> p >> x;
fw.add(a[p - 1], -1);
a[p - 1] = x;
fw.add(a[p - 1], 1);
cout << fw.kth((N + 1) / 2) << '\n';
}
}

树状数组
https://blog.fredbill.eu.org/2023/12/25/算法/数据结构/树状数组/
作者
FredBill
发布于
2023年12月25日
许可协议