割点、桥,点、边双连通分量

割点、桥,点、边双连通分量

参考:https://oi-wiki.org/graph/cut

洛谷P3388 割点

cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#include <bits/stdc++.h>

struct Edge {
int v;
};
using AdjList = std::vector<std::vector<Edge>>;

std::vector<bool> cut_point(const AdjList& G) {
const int N = G.size();
std::vector<int> dfn(N, -1), low(N);
std::vector<bool> is_cut(N);
int dfn_cnt = 0;

auto dfs = [&](auto& dfs, int u, int pre) -> void {
low[u] = dfn[u] = dfn_cnt++;
int child_cnt = 0;
for (auto&& e : G[u]) {
if (e.v == pre) continue;
if (dfn[e.v] != -1) {
low[u] = std::min(low[u], dfn[e.v]);
continue;
}
dfs(dfs, e.v, u);
low[u] = std::min(low[u], low[e.v]);
if (pre != -1 && low[e.v] >= dfn[u]) is_cut[u] = true;
++child_cnt;
}
if (pre == -1 && child_cnt >= 2) is_cut[u] = true;
};

for (int u = 0; u < N; ++u)
if (dfn[u] == -1) dfs(dfs, u, -1);
return is_cut;
}

using namespace std;
int main() {
ios::sync_with_stdio(false), cin.tie(0);
int N, M;
cin >> N >> M;
AdjList G(N);
for (int i = 0; i < M; ++i) {
int u, v;
cin >> u >> v;
--u, --v;
G[u].emplace_back(Edge{v});
G[v].emplace_back(Edge{u});
}
auto is_cut = cut_point(G);
cout << ranges::count(is_cut, true) << '\n';
for (int u = 0; u < N; ++u)
if (is_cut[u]) cout << u + 1 << ' ';
return 0;
}

桥 (见下面的边双连通分量)

cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include <bits/stdc++.h>

struct Edge {
int v;
bool is_bridge;
};
class AdjList {
std::vector<std::vector<int>> G;
std::vector<Edge> e;

public:
AdjList(int N, int M) : G(N) { e.reserve(M * 2); }
int size() const { return G.size(); }
const std::vector<int>& edge_ids(int u) const { return G[u]; }
const Edge& operator[](int edge_id) const { return e[edge_id]; }
Edge& operator[](int edge_id) { return e[edge_id]; }
void add_edge(int u, int v) {
G[u].push_back(e.size()), e.push_back(Edge{v, false});
G[v].push_back(e.size()), e.push_back(Edge{u, false});
}
};

void bridge(AdjList& G) {
const int N = G.size();
std::vector<int> dfn(N, -1), low(N);
int dfn_cnt = 0;
auto dfs = [&](auto& dfs, int u, int in_edge_id) -> void {
low[u] = dfn[u] = dfn_cnt++;
for (int edge_id : G.edge_ids(u)) {
auto& e = G[edge_id];
if (dfn[e.v] == -1) {
dfs(dfs, e.v, edge_id);
low[u] = std::min(low[u], low[e.v]);
if (low[e.v] > dfn[u]) e.is_bridge = G[edge_id ^ 1].is_bridge = true;
} else if ((edge_id ^ 1) != in_edge_id) {
low[u] = std::min(low[u], dfn[e.v]);
}
}
};
for (int u = 0; u < N; ++u)
if (dfn[u] == -1) dfs(dfs, u, -1);
}

洛谷P8435 点双连通分量

cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#include <bits/stdc++.h>

struct Edge {
int v;
};
using AdjList = std::vector<std::vector<Edge>>;

std::vector<std::vector<int>> v_dcc(const AdjList& G) {
const int N = G.size();
std::vector<int> dfn(N, -1), low(N), stk;
std::vector<std::vector<int>> dccs;
stk.reserve(N);
int dfn_cnt = 0;

auto dfs = [&](auto& dfs, int u, int pre) -> void {
low[u] = dfn[u] = dfn_cnt++;
stk.push_back(u);
bool has_unvisited_child = false;
for (auto&& e : G[u]) {
if (dfn[e.v] == -1) {
has_unvisited_child = true;
dfs(dfs, e.v, u);
low[u] = std::min(low[u], low[e.v]);
if (low[e.v] >= dfn[u]) {
auto& dcc = dccs.emplace_back();
for (;;) {
int v = stk.back();
stk.pop_back();
dcc.push_back(v);
if (v == e.v) break;
}
dcc.push_back(u);
}
} else if (e.v != pre) {
low[u] = std::min(low[u], dfn[e.v]);
}
}
if (pre == -1 && !has_unvisited_child) {
dccs.emplace_back().emplace_back(u);
return;
}
};
for (int u = 0; u < N; ++u)
if (dfn[u] == -1) dfs(dfs, u, -1);
return dccs;
}

using namespace std;
int main() {
ios::sync_with_stdio(false), cin.tie(0);
int N, M;
cin >> N >> M;
AdjList G(N);
for (int i = 0; i < M; ++i) {
int u, v;
cin >> u >> v;
--u, --v;
G[u].emplace_back(Edge{v});
G[v].emplace_back(Edge{u});
}
auto dccs = v_dcc(G);
cout << dccs.size() << "\n";
for (auto&& dcc : dccs) {
cout << dcc.size();
for (int v : dcc) cout << ' ' << v + 1;
cout << "\n";
}
return 0;
}

洛谷P8436 边双连通分量

cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#include <bits/stdc++.h>

struct Edge {
int v;
bool is_bridge;
};
class AdjList {
std::vector<std::vector<int>> G;
std::vector<Edge> e;

public:
AdjList(int N, int M) : G(N) { e.reserve(M * 2); }
int size() const { return G.size(); }
const std::vector<int>& edge_ids(int u) const { return G[u]; }
const Edge& operator[](int edge_id) const { return e[edge_id]; }
Edge& operator[](int edge_id) { return e[edge_id]; }
void add_edge(int u, int v) {
G[u].push_back(e.size()), e.push_back(Edge{v, false});
G[v].push_back(e.size()), e.push_back(Edge{u, false});
}
};

void bridge(AdjList& G) {
const int N = G.size();
std::vector<int> dfn(N, -1), low(N);
int dfn_cnt = 0;
auto dfs = [&](auto& dfs, int u, int in_edge_id) -> void {
low[u] = dfn[u] = dfn_cnt++;
for (int edge_id : G.edge_ids(u)) {
auto& e = G[edge_id];
if (dfn[e.v] == -1) {
dfs(dfs, e.v, edge_id);
low[u] = std::min(low[u], low[e.v]);
if (low[e.v] > dfn[u]) e.is_bridge = G[edge_id ^ 1].is_bridge = true;
} else if ((edge_id ^ 1) != in_edge_id) {
low[u] = std::min(low[u], dfn[e.v]);
}
}
};
for (int u = 0; u < N; ++u)
if (dfn[u] == -1) dfs(dfs, u, -1);
}

std::vector<std::vector<int>> e_dcc(const AdjList& G) {
const int N = G.size();
std::vector<bool> vi(N);
std::vector<std::vector<int>> dccs;
auto dfs = [&](auto& dfs, int u) -> void {
vi[u] = true;
dccs.back().push_back(u);
for (int edge_id : G.edge_ids(u)) {
auto&& e = G[edge_id];
if (!(e.is_bridge || vi[e.v])) dfs(dfs, e.v);
}
};
for (int u = 0; u < N; ++u) {
if (vi[u]) continue;
dccs.emplace_back();
dfs(dfs, u);
}
return dccs;
}

using namespace std;
int main() {
ios::sync_with_stdio(false), cin.tie(0);
int N, M;
cin >> N >> M;
AdjList G(N, M);
for (int i = 0; i < M; ++i) {
int u, v;
cin >> u >> v;
--u, --v;
G.add_edge(u, v);
}
bridge(G);
auto dccs = e_dcc(G);
cout << dccs.size() << '\n';
for (auto&& dcc : dccs) {
cout << dcc.size();
for (int v : dcc) cout << ' ' << v + 1;
cout << "\n";
}
}

割点、桥,点、边双连通分量
https://blog.fredbill.eu.org/2023/12/24/算法/图论/连通性相关/割点、桥,点、边双连通分量/
作者
FredBill
发布于
2023年12月24日
许可协议